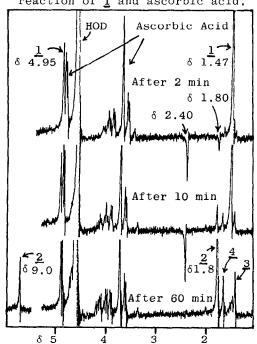
AN UNUSUAL REACTION OF CIS-6-HYDROPEROXY-5-HYDROXY-5,6-DIHYDROTHYMINE WITH ASCORBIC ACID

Toshio Itahara

Institute of Chemistry, College of Liberal Arts, Kagoshima University, Korimoto, Kagoshima 890, Japan


Summary: When two solutions of cis-6-hydroperoxy-5-hydroxy-5,6-dihydrothymine and ascorbic acid in deuterium oxide were mixed, chemically induced dynamic nuclear polarization was observed. The reaction gave N-formyl-N'-pyruvylurea.

Ionizing radiation of aqueous aerated solutions of DNA results in the formation of hydroperoxides of thymine residue in DNA. One of the major products is cis-6-hydroperoxy-5-hydroxy-5,6-dihydrothymine (1), which is known to have mutagenic activities. In the studies of reaction of 1 with biomolecules, chemically induced dynamic nuclear polarization (CIDNP) was observed on treatment of 1 with ascorbic acid in D2O by NMR spectroscopy. The reaction gave N-formyl-N'-pyruvylurea (2), although 2 was reported to be obtained from radiation and oxidation with O2 promoted with ascorbic acid and Cu(II) ion of thymine.

When a solution of 1^7 (10 mg) in $\mathrm{D}_2\mathrm{O}$ (0.3 ml) added into a solution of ascorbic acid⁸ (5, 10, 20, or 30 mg) in D_2O (0.3 ml), $^1\text{H-CIDNP}$ was observed by NMR spectroscopy. The CIDNP signals observed on treatment of 1 (10 mg) and ascorbic acid (10 mg) in D₂O at room temperature are illustrated in Fig. 1. The reaction gave 2 in 70 % yield. The structure of 2 was confirmed by comparing with IR spectrum⁵ and ¹H-NMR data⁹ reported for 2. Minor reaction products were cis-5.6-dihydroxy-5,6-dihydrothymine (3) and 5-hydroxy-5-methylbarbituric acid The structures of 3 and 4 were confirmed by comparing with authentic samples prepared by oxidation of thymine with $KMnO_4$. 10

In Fig. 1, two emission peaks at δ 1.80 and δ 2.40 were detected.

Fig. 1. 1 H-CIDNP signals observed on reaction of $\underline{1}$ and ascorbic acid.

The emission peak at δ 1.80 was inverted within 5-8 min. On the other hand, the intensive emission peak at δ 2.40 was stable for more than 40 min and decreased with decreasing of the absorption peaks at δ 1.47 and δ 4.95 attributed to $\underline{1}$ and with increasing of the peaks at δ 1.80 and δ 8.90 attributed to 2. Furthermore, Fig. 1 shows that a large portion of ascorbic acid was intact after the reaction of 1. In view of the proposed mechanism for cleavage of ${\rm C_5-C_6}$ bond of uracil by ionizing radiation 11 and our present results, the reaction of 1 and ascorbic acid may be explained as Scheme 1 and CIDNP observed may be attributed to a stable radical pair intermediate (5).

References and Notes

- 1. M. Daniels, G. Scholes, J. Weiss, and C. M. Wheeler, J. Chem. Soc., 1957, 226.
- J. Cadet and R. Téoule, C. R. Acad. Sci., Paris, <u>276C</u>, 1743 (1973). 2.
- B. S. Hahn and S. Y. Wang, Biochem. Biophys. Res. Commun., <u>54</u>, 1224 (1973) H. F. Thomas, R. M. Herriott, B. S. Hahn, and S. Y. Wang, Nature, <u>259</u>, 341 (1976).
- R. Téoule, J. Cadet, and J. Ulrich, C. R. Acad. Sci., Paris, 270C, 362 (1970).
- S. Ito, T. Kinoshita, M. Teishi, and K. Sasaki, Nucleic Acids Res. Symp. 6.
- Ser., No. 17, 21 (1986).
 The compound <u>1</u> was prepared in 40 % yield by treatment of <u>3</u>¹⁰ with H₂O₂ in 0.1 M HCl (pH 1.0) at room₃ temperature for 24 h according to the manner described by Hahn and Wang and stable in water at room temperature for more than 3 days.
- Guaranteed reagent from Wako Pure Chemicals or Specially Prepared Reagent for analysis of phenols from Nakarai Chemicals was used as ascorbic acid.

- 9. J. Cadet, J. Ulrich, and R. Técule, Tetrahedron, 31, 2057 (1975).
 10. S. Iida and H. Hayatsu, Biochim. Biophys. Acta, 213, 1 (1970).
 11. M. N. Schuchmann and C. von Sonntag, J. Chem. Soc. Perkin Trans. II, 1983, 1525.

(Received in Japan 30 April 1987)